BCA-404(O)

B. C. A. (Fourth Semester) EXAMINATION, May 2013

(Old Course)

Paper Fourth

OPERATIONS RESEARCH

Time: Three Hours]

Maximum Marks: 75

Note: Section A is compulsory. Attempt seven questions out of ten questions from Section B and one question from Section C.

Section-A

1. Solve the following problem graphically:

Maximize:

$$Z = 2x_1 + 3x_2$$

Subject to the constraints:

 $x_1 + x_2 \le 1$

$$3x_1 + x_2 \le 4$$

and $x_1, x_2 \ge 0$.

2. How should the jobs be assigned to various machines so that total cost is minimized?

	M_1	M ₂	M_3	M_4
\mathbf{J}_1	5	7	11	6
J ₂ J ₃	8	5	9	6
J_3	4	7	10	7
J_4	10	4	8	3

Section - B

- 3. A resourceful home decorator manufactures two types of lamps say A and B. Both the lamps go through two techniques first a cutter, second a finisher. Lamp A requires 2 hours of the cutter's time and 1 hour of the finisher's time. Lamp B requires 1 hour of cutter's time and 2 hours of the finisher's time. The cutter has 104 hours and finisher 76 hours of available time each month. Profit on lamp A is ₹ 6 and one lamp B is ₹ 11. Assuming that he can sell all that he produces, formulate this problem as an LPP. 6
- 4. Explain the following terms:

6

- (i) Basic feasible solution
- (ii) Optimal solution
- 5. What is degeneracy in transportation problem? How to overcome it?
- 6. Define the following terms :

6

- (i) Slack variable
- (ii) Surplus variable
- (iii) Artificial variable
- 7. Find the initial basic feasible solution of the following Transportation problem by Vogel's approximation method:

Warehouse Capacity W_2 W_3 W, W_4 F_1 19 .30 50 10 Factory F_2 70 30 40 60 40 F_2 8 70 20 18 . 5 8 .7 14

Demand

- What is Operations Research? Describe briefly its applications.
- Solve the following LPP by using Simplex method: 6
 Maximize:

$$z = 5x_1 + 3x_2$$

Subject to the constraints:

$$3x_1 + 5x_2 \le 15$$
$$5x_1 + 2x_2 \le 10$$

and $x_1, x_2 \ge 0$.

10.

				To			
		E	F	G	Н	I	
	A	.8	10	12	17	15	1
From	В	15	13	18	11	9	
	C	14	20	6	10	13	
	D	13	19	7	6	12	

The present allocation is as the follows:

6

A to E 90, A to F 10, B to F 150, C to F 10, C to G 50, C to I 120, D to H 210, D to I 70. Check if this allocation is optimum. If not, find an optimum schedule.

- Describe a method of drawing minimum no. of lines in the context of assignment problem.
- 12. Briefly explain Monte-Carlo method of simulation.

Section - C

13. Solve the following LPP using big M method. \ \ \ \ 15 Minimize:

$$z = x_1 + x_2$$

Subject to the constraints:

$$2x_1+x_2\geq 4$$

$$x_1+7x_2\geq 7$$

and $x_1, x_2 \ge 0$.

14. Solve the following LPP by resolving degeneracy:

Minimize:

$$z = 5x_1 + 3x_2$$

Subject to:

15

$$x_1 + x_2 \le 2;$$

$$5x_1+2x_2\leq 10$$

$$3x_1+8x_2\leq 12$$

and $x_1, x_2 \ge 0$.

BCA-404(O)

H-28

2